Methyl-5,10,15,20-tetraphenylporphinatothallium(III)

- (12) G. Avitable, P. Ganis, and M. Nemiroff, Acta Crystallogr., Sect. B, 27, 725 (1971).
- (13) B. L. Haymore and J. A. Ibers, *Inorg. Chem.*, 14, 2617 (1975); B. L. Haymore and J. A. Ibers, *J. Am. Chem. Soc.*, 97, 5369 (1975).
- (14) B. L. Haymore and J. A. Ibers, *Inorg. Chem.*, 14, 3060 (1975).
 (15) B. L. Haymore and J. A. Ibers, *Inorg. Chem.*, 14, 1369 (1975).
- (16) B. L. Haymore and J. A. Ibers, J. Am. Chem. Soc., 95, 3052 (1973).
 (17) E. W. Abel, C. A. Burton, M. R. Churchill, and K. G. Lin, J. Chem. Soc., Chem. Commun. 268 (1974); M. R. Churchill and K. G. Lin, Inorg. Chem., 14, 1133 (1975).
- T. E. Napier, D. W. Meek, R. M. Kirchner, and J. A. Ibers, J. Am. Chem. Soc., 95, 4194 (1973). (18)
- (19) J. A. McArdle, A. J. Schultz, B. J. Corden, and R. Eisenberg, Inorg. Chem., 12, 1676 (1973).
- (20)A. Nakamura, T. Yoshida, M. Cowie, S. Otsuka, and J. A. Ibers, J. Am. Chem. Soc., 99, 2108 (1977).
- W. H. Knoth, J. Am. Chem. Soc., 94, 104 (1972). (21)
- S. Otsuka, A. Nakamura, T. Koyama, and Y. Tatsuno, Justus Liebigs (22)Ann. Chem., 626 (1975).
- R. J. Doedens and J. A. Ibers, Inorg. Chem., 6, 204 (1967)
- (24) The Northwestern absorption program AGNOST includes the Cop-pens-Leiserowitz-Rabinovich logic for Gaussian integration. In addition to local programs for the CDC 6400 computer, local modifications of the following programs were employed: Zalkin's FORDAP Fourier program, Johnson's ORTEP II thermal elipsoid plotting program, Busing and Levy's ORFFE error function program and Dewar's program FAME for generation of normalized structure factors. Our full-matrix, least-squares program, NUCLS, in its nongroup form, closely resembles the Busing-Levy ORFLS program. Final calculations were carried out by remote hook-up to the Lawrence Berkeley Laboratory CDC 7600 computer. These same programs were used.
- (25) D. T. Cromer and J. T. Waber, "International Tables for X-ray Crystallography", Vol. IV, Kynoch Press, Birmingham, England, 1974, Table 2.2A; for hydrogen atoms see R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., **42**, 3175 (1965); for the values of $\Delta f'$ and $\Delta f''$ for Ru, P, and S, see D. T. Cromer and D. Liberman, *ibid.*, 53, 1891 (1970).
- J. A. Ibers and W. C. Hamilton, Acta Crystallogr., 17, 781 (1964). (26)
- (27) Supplementary material.
- (28) A. C. Skapski and P. G. H. Troughton, *Chem. Commun.*, 1230 (1968).
 (29) A. C. Skapski and F. A. Stephens, *Chem. Commun.*, 1008 (1969).
 (30) S. D. Ibekwe, B. T. Kilbourn, and U. A. Raeburn, *Chem. Commun.*,
- 433 (1969).
- (31) E. L. Muetterties, Ed., "Transition Metal Hydrides", Marcel Dekker, New York, N.Y., 1971, p 43.

- (32) L. Aslanov, R. Mason, A. G. Wheeler, and P. O. Whimp, Chem. (32) D. Astatov, K. Mason, A. G. Wheeler, and Y. C. Whitep, Commun., 30 (1970).
 (33) P. L. Orioli and L. Vaska, Proc. Chem. Soc., London, 333 (1962).
 (34) R. D. Dobrott and W. N. Lipscomb, J. Chem. Phys., 37, 1779 (1962).
 (35) W. J. Dulmage and W. N. Lipscomb, Acta Crystallogr., 5, 260 (1952).
 (36) J. Reddy and W. N. Lipscomb, J. Chem. Phys., 31, 610 (1959).

- (37) B. L. Haymore and J. A. Ibers, *Inorg. Chem.*, 14, 2610 (1975).
 (38) A. P. Gaughan, B. J. Corden, R. Eisenberg, and J. A. Ibers, *Inorg. Chem.*,
- 13, 786 (1974).
- (39) G. R. Clark, K. R. Grundy, W. R. Roper, J. M. Waters, and K. R. Whittle, J. Chem. Soc., Chem. Commun., 119 (1972).
 (40) B. R. Davis and J. A. Ibers, Inorg. Chem., 9, 2768 (1970).
- (41) R. Mason, K. M. Thomas, J. A. Zubieta, P. G. Douglas, A. R. Gilbraith, and B. L. Shaw, J. Am. Chem. Soc., 96, 260 (1974); V. F. Duckworth, P. G. Douglas, R. Mason, and B. L. Shaw, Chem. Commun., 1083 (1970).
- (42) M. Cowie, B. L. Haymore, and J. A. Ibers, J. Am. Chem. Soc., 98, 7608 (1976).
- (43) I. M. Treitel, M. J. Flood, R. E. Marsh, and H. B. Gray, J. Am. Chem. Soc., 91, 6512 (1969).
- (44) P. D. Chadwick, J. Chatt, R. H. Crabtree, and R. L. Richards, J. Chem. Soc., Chem. Commun., 351 (1975).
- (45) M. Mercer, R. H. Crabtree, and R. L. Richards, J. Chem. Soc., Chem. Commun., 808 (1973).
- (46) P. W. Jolly, K. Jonas, C. Krüger, and Y. H. Tsay, J. Organomet. Chem., 33, 109 (1971).
- (47) F. Bottomley and S. C. Nyburg, Chem. Commun., 897 (1966); F. Bottomley and S. C. Nyburg, *Acta Crystallogr., Sect. B.*, 24, 1289 (1968); A. D. Allen, F. Bottomley, R. O. Harris, V. P. Reinsalu, and C. V. Senoff,
- J. Am. Chem. Soc., 89, 5595 (1967).
 (48) B. R. Davis, N. C. Payne, and J. A. Ibers, J. Am. Chem. Soc., 91, 1240 (1969); B. R. Davis, N. C. Payne, and J. A. Ibers, Inorg. Chem., 8, 2719 (1969); A. Yamamoto, S. Kitazume, L. S. Pu, and S. Ikeda, J. Am. Chem. (1907), R. Famanico, S. Adamsin, L. L.
 Soc., 93, 371 (1971).
 (49) J. E. Fergusson, J. L. Love, and W. T. Robinson, *Inorg. Chem.*, 11, 1662
- (1972).
- (50) T. Uchida, Y. Uchida, M. Hidai, and T. Kodama, Bull, Chem. Soc. Jpn., 44, 2883 (1971); M. Hidai, K. Tominari, and Y. Uchida, J. Am. Chem. Soc., 94, 110 (1972).
- B. R. Davis and J. A. Ibers, Inorg. Chem., 10, 578 (1971).
- W. H. Knoth, J. Am. Chem. Soc., 88, 935 (1966).
- (53) L. E. Orgel, "An Introduction to Transition Metal Chemistry", Methuen, London, 1960, p 137.
- (54) D. Sellmann, Angew. Chem., Int. Ed. Engl., 13, 639 (1974); J. Chatt, G. A. Heath, and R. L. Richards, J. Chem. Soc., Chem. Commun., 1010 (1972).

Contribution from the Department of Chemistry, The Polytechnic of North London, Holloway, London N7 8DB, England

Molecular Structures of Methyl-5,10,15,20-tetraphenylporphinatothallium(III) and Chloro-5,10,15,20-tetraphenylporphinatothallium(III)

K. HENRICK,* R. W. MATTHEWS, and P. A. TASKER

Received May 16, 1977

AIC703524

Methyl-5,10,15,20-tetraphenylporphinatothallium(III), CH₃TlTPP, and methyl-2,3,7,8,12,13,17,18-octaethylporphinatothallium(III), CH₃TlOEP, are obtained by the reaction of diacetatomethylthallium(III) with TPPH₂ and OEPH₂, respectively. The molecule CH₃TlTPP displays a square-pyramidal coordination geometry for the thallium atom and crystallizes in the monoclinic space group $P2_1/c$, with a = 10.046 (2), b = 16.244 (3), c = 23.373 (5) Å, $\beta = 115.5$ (1)°, and Z = 4. The compound previously assumed to be aquohydroxy-5,10,15,20-tetraphenylporphinatothallium(III), (H₂O)-OHTITPP is isomorphous with CH_3TITPP and is shown by x-ray analysis to be chloro-5,10,15,20-tetraphenylporphinatothallium(III), CITITPP, a = 10.064 (2), b = 16.177 (2), c = 23.354 (5) Å, and $\beta = 115.3$ (1)°. Measurement of diffracted intensities employed $\theta - 2\theta$ scans with graphite-monochromated Mo K α radiation on a four-circle diffractometer. The structures were solved using the heavy-atom technique. Full-matrix least-squares refinement gave a final value of 0.045 (0.046) [for CH₃TITPP(CITITPP) for the conventional unweighted residual, R, for 2751 (2782) unique reflections having $I \ge 3\sigma(I)$. In these isomorphous complexes there are significant differences in coordination geometry, notably the displacement of the thallium atom from the porphyrin mean plane. CH₃TITPP: C₁...Tl, 0.979; Tl-N, 2.29 (1); Tl-C, 2.147 (12) Å. CITITPP: C_t...Tl, 0.737; Tl–N, 2.21 (1); Tl–Cl, 2.420 (4) Å. The ¹³C and ¹H NMR spectra of CH₃TlTPP and CH₃TlOEP show marked differences in the ²⁰⁵Tl–¹³C and ²⁰⁵Tl–¹H coupling constants when compared with their chlorothallium porphyrin analogues, CITITPP and CITIOEP.

The interpretation of NMR parameters of complexes containing heavy metals is of considerable current interest.¹ A knowledge of molecular structures in solution is a prerequisite for any detailed analysis of the factors influencing these parameters. For example, it has been established²⁻⁴ that the coupling constants of several heavy-metal organometallic

derivatives are dependent on solvent-complex interactions. As an extension of a program to establish the nature of these solvent interactions in organothallium complexes,^{3,4} coordination environments have been sought which either preclude coordination of solvent molecules or allow exchange of solvent at a single site only. Alkylthallium porphyrins were selected

for study and we report here unexpected results which were obtained with methyl-5,10,15,20-tetraphenylporphinato-thallium(III), CH₃TlTPP, and methyl-2,3,7,8,12,13,17,18-octaethylporphinatothallium(III), CH₃TlOEP.

Experimental Section

¹³C NMR spectra were obtained at 22.63 MHz on a Bruker HX-90E spectrometer and ¹H NMR spectra were obtained at 60 MHz in lock mode on a Perkin-Elmer R12B spectrometer and at 220 MHz on a Varian HR-220 spectrometer. All spectra were run in saturated deuteriochloroform solutions with tetramethylsilane as internal standard, and signal multiplicities are reported as d = doublet, t = triplet, and m = multiplet. Except where noted, by reference to a specific isotope of thallium, separate coupling to ²⁰⁵Tl and ²⁰³Tl ($I = {}^{1}/{2}$, natural abundance 70.5 and 29.5%, respectively, $\gamma_{205}/\gamma_{203} = 1.0097$) was not resolved and is indicated by omission of the mass number. Microanalysis data were determined on a Perkin-Elmer Elemental Analyzer 240 within this Department, and by the Butterworth Microanalytical Service.

Methyl-5,10,15,20-tetraphenylporphinatothallium(III), CH₃TITPP. Tetraphenylporphyrin (TPPH₂) (610 mg, 1.0 mmol) was dissolved with heating in chloroform (50 mL); excess diacetatomethylthallium(III)⁵ (370 mg, 1.1 mmol) in chloroform (25 mL) was added to the cooled solution and the solution was set aside for 30 min. The green solution was concentrated to ca. 5 mL and left to stand at -5° C overnight. The crystals produced were collected by filtration and air dried to give CH₃TITPP, as deep blue prisms, mp >300 °C (730 mg, 91%). Anal. Calcd for C4₅H₃₁N₄Tl: C, 64.9; H, 3.7; N, 6.7. Found: C, 65.0; H, 4.1; N, 6.6. ¹H NMR: δ -3.49 (d, CH₃-Tl, ²J⁽²⁰⁵Tl-¹H) = 724 ± 2 Hz), 7.73 (m, meta and para H), 8.18 (m, ortho H),⁶ 8.91 ppm (d, β -H, ⁴J(Tl-¹H) = 16.4 Hz). ¹³C NMR: δ 121.5 (d, meso C, ³J(Tl-¹³C) = 27.6 Hz), 134.7 (s, C₂), 142.9 (s, C₁), 150.2 ppm (d, α -C, ²J(Tl-¹³C) = 33.5 Hz). Low solubility precluded observation of the ¹³C resonance due to CH₃-Tl.

Methyl-2,3,7,8,12,13,17,18-octaethylporphinatothallium(III), CH₃TIOEP, was prepared from octaethylporphyrin (OEPH₂) in an analogous manner to that for CH₃TITPP. Red crystals of CH₃TIOEP were obtained from chloroform (87%), mp > 300 °C. Anal. Calcd for C₃₇H₄₇N₄Tl: C, 59.1; H, 6.3; N, 7.4. Found: C, 58.9; H, 6.2; N, 7.8. ¹H NMR: δ -3.89 (d, CH₃-Tl, ²J(²⁰⁵Tl⁻¹H) = 715 ± 3 Hz), 1.89 (t, CH₃-CH₂), 4.13 (m, CH₂-CH₃),⁷ 10.15 ppm (d, meso H, J(Tl⁻¹H) = 7.8 Hz). ¹³C NMR: δ -0.86 (d, CH₃-Tl, ¹J(²⁰⁵Tl⁻¹3C) = 5835 ± 3 Hz), 18.5 (s, CH₃-CH₂), 19.9 (s, CH₃-CH₂), 97.5 (d, meso C, ³J(Tl⁻¹³C) = 52 Hz), 142.1 (d, β-C, ³J(Tl⁻¹³C) = 24.4 Hz), 147.5 ppm (d, α-C, ²J(Tl⁻¹³C) = 29.4 Hz).

Chloro-5,10,15,20-tetraphenylporphinatothallium(III), CITITPP, was obtained by the reaction of TPPH₂ with trifluoroacetatothallium(III) followed by chromatography on alumina with chloroform (2% ethanol), under conditions used by Abraham,⁸ for the synthesis of the compound presumed to be aquohydroxy-5,10,15,20-tetraphenylporphinatothallium(III), (H₂O)OHTITPP. Crystals of CITITPP suitable for diffraction studies were grown from chloroform/methanol. The ¹H NMR spectrum of CITITPP was in agreement with that of the compound reported to be (H₂O)OHTITPP.⁸ Anal. Calcd for C₄₄H₂₈N₄CITI: C, 62.0; H, 3.3; N, 6.6; Cl, 4.2. Found: C, 61.8; H, 3.5; N, 6.4; Cl 4.7. Calcd for C₄₄H₃₁N₄O₂TI: C, 62.0; H, 3.6; N, 6.6.

Chloro-2,3,7,8,12,13,17,18-octaethylporphinatothallium(III), CITIOEP, was prepared by a method analogous to that for CITITPP. The ¹H NMR spectrum of CITITPP was in agreement with that of the compound reported to be (H₂O)OHTIOEP.⁸ Anal. Calcd for C₃₆H₄₄N₄CITI: C, 55.9; H, 5.7; N, 7.3; Cl, 4.6. Found: C, 55.9; H, 5.1; N, 6.2; Cl, 5.7. Calcd for C₃₆H₄₇N₄O₂TI: C, 56.0; H, 6.1; N, 7.3.

Crystallography. Weissenberg photographs used to determine the probable space group indicated for both CH₃TITPP and CITITPP monoclinic, 2/m, symmetry. The systematically absent reflections were those uniquely required by the centrosymmetric space group $P2_1/c$.

Unit-cell calibration was carried out for each sample by a least-squares fit of the angular parameters for 25 reflections with 2θ ca. 20° centered in the counter aperture of a Philips PW1100 automatic four-circle diffractometer using graphite monochromatized Mo K α radiation (λ 0.7107 Å). A θ -2 θ scan mode was used for data collection and reflections with 3.0 < θ < 30.0° were examined. Weak

Table I. Summary of Crystal Data and Intensity Collection

Compd	CH, TITPP	CITITPP
Formula	832.1	852.6
weight, amu		
Formula	C45H31N4Tl	C, H, N, CIT1
Space group	$P2_1/c$	$P2./c^{2}$
<i>a</i> , A	10.046 (2)	10.046(2)
b, A	16.244 (3)	16.177(3)
<i>c</i> , A	23.373 (5)	23.354 (5)
β, deg	115.5 (1)	115.3 (1)
Space group ^a	$P2_1/n$	P2./n
<i>c</i> , A	21.095 (5)	21.172 (5)
β, deg	90.0 (1)	90.5 (4)
V, A ³	3442.4	3443.6
Z	4	4
F(000)	1640	1672
Crystal dimensions, mm	$0.15\times0.15\times0.15$	$0.20 \times 0.07 \times 0.20$
μ , cm ⁻¹	45.25	45.97
Final no. of variables	164	164
Unique data used	2751	2782
$I > 3\sigma(I)$		

^a The monoclinic space group $P2_1/n$ was used in the data collection and refinement and the atomic coordinates (Table II) are given in this space group.

reflections which gave $I_{\rm top} - 2(I_{\rm top})^{1/2} < I_{\rm back}$ on the first scan were not further examined $(I_{\rm top}$ is the intensity at the top of the reflection peak and $I_{\rm back}$ is the mean of two preliminary 5-s background measurements on either side of the peak). Of the remaining reflections those for which the total intensity recorded in the first scan of the peak $(I_{\rm int})$ was <500 counts were scanned twice to increase their accuracy. A constant scan speed of 0.05° s⁻¹ and a variable scan width of $(0.8 + 0.1 \tan \theta)^{\circ}$ were used, with a background measuring time proportional to $I_{\rm back}/I_{\rm int}$. Three standard reflections were measured every 5 h during data collection and showed no significant variations in intensity. See Table I for pertinent crystal information and details of data collection.

Reflections in two quadrants (5142) were measured after the preliminary test (see above) for CH₃TITPP, and 3032 reflections were measured in one quadrant for CITITPP. The reflection intensities were calculated from the peak and background measurements using a program written for the PW1100 diffractometer.⁹ The variance of the intensity, *I*, was calculated as the sum of the variance due to counting statistics and $(0.03I)^2$, where the term in I^2 was introduced to allow for other sources of error.¹⁰ *I* and $\sigma(I)$ were corrected for Lorentz and polarization factors and reflections for which $I < 3\sigma(I)$ were rejected. The transmission factors estimated, for the crystal of CITITPP, along the nonequivalent edge lengths were 0.725 and 0.400. The transmission factor estimated for the near cubic crystal of CH₃TITPP was 0.507 along the crystal edge length. No absorption corrections were applied. Equivalents were averaged to give 2751 and 2782 unique reflections for CH₃TITPP and CITITPP, respectively.

Both structures were solved by the heavy-atom method and refined by full-matrix least squares. The hydrogen atom coordinates were estimated geometrically (assuming C-H = 1.08 Å) and for the refinement allowed to ride on their respective carbon atom coordinates. For both structures the phenyl rings were refined as rigid bodies (with C-C = 1.395 Å) and for the final stages of refinement the thallium atom in each case was allowed to assume anisotropic thermal parameters (together with the chlorine atom in CITITPP). In the final cycle of refinement no parameter shift in each compound exceeded 0.12σ . For CH₃TITPP R was 0.045 and R' = 0.043 and for CITITPP R = 0.046 and R' = 0.044 ($R' = (\sum w ||F_o| - |F_c||^2 / \sum w |F_o|^2)^{1/2}$, where $w = m(\sigma^2 |F_o| + n \times 10^{-4} |F_o|^2)^{-1}$, and for CH₃TITPP m = 1.0471, n = 2.3, and for CITITPP m = 1.08, n = 0.59). Neutral atom scattering factors were used,¹¹ those for TI and CI being corrected for anomalous dispersion effects ($\Delta f', \Delta f''$).¹² Computation was carried out using the "Shelx" system¹³ and ORTEP2.¹⁴ A listing of the observed and calculated structure amplitudes for the data used in the refinements is available.¹⁵

Results and Discussion

The reaction of chloroform solutions of TPPH_2 and OEPH_2 with a slight excess of diacetatomethylthallium(III)⁵ at room temperature gave >90% of CH₃TITPP or CH₃TIOEP after

Table II.	Atomic Fractional Cell Coordinates (Tl ×10 ⁵	, others $\times 10^4$) for the	Tetraphenylporphinat	othallium Compo	ounds
CH ₃ TITPP	and CITITPP ^d				

Atom type ^a	x ^b	y ^b	z ^b	
	18631 (5) [16219 (5)]	19042 (4) [18281 (3)]	34512 (2) [34785 (3)]	
Nat	251 (9) [218 (10)]	2793 (6) [2793 (6)]	3798 (4) [3799 (5)]	
N _b ,	433 (8) [408 (9)]	1884 (6) [1889 (7)]	2607 (4) [2604 (4)]	
Nci	1790 (9) [1747 (9)]	515 (6) [497 (6)]	3248 (4) [3255 (5)]	
Nd.	1498 (9) [1486 (10)]	1402 (6) [1382 (7)]	4450 (4) [4460 (5)]	
C	135 (10) [92 (12)]	3070 (8) [3070 (8)]	4408 (5) [4399 (5)]	
Can	-632 (12) [-599 (13)]	3815 (8) [3833 (8)]	4409 (6) [4406 (7)]	
Čaz	-961 (12) [-944 (13)]	3977 (8) [3992 (8)]	3800 (6) [3791 (6)]	
C	-438(11)[-414(12)]	3321 (7) 3352 (8)	3422 (5) [3419 (6)]	
Cas	-624 (10) [-594 (12)]	3237 (7) [3263 (8)]	2756 (5) [2764 (6)]	
Cas	-1431(8)[-1351(9)]	3884 (5) [3937 (5)]	2441 (4) [2424 (4)]	
C _b ,	-210(11)[-231(12)]	2571 (7) [2583 (8)]	2390 (5) [2397 (6)]	
$\tilde{C_{b_2}}$	-491 (11) [-451 (12)]	2470 (7) [2490 (8)]	1716 (5) [1718 (6)]	
$\tilde{C_{b_3}}$	-10(11) [25(12)]	1732 (7) [1743 (9)]	1548 (6) [1539 (6)]	
C _{b4}	587 (11) [549 (12)]	1350 (7) [1353 (8)]	2102(5)[2101(6)]	
Cbs	1123 (11) [1119 (12)]	579 (7) [566 (8)]	2118 (5) [2132 (6)]	
C _{b6}	1062 (7) [1043 (9)]	65 (5) [63 (5)]	1521 (3) [1528 (4)]	
Cci	1682 (10) [1628 (12)]	171 (7) [156 (8)]	2651 (5) [2664 (6)]	
C_{c_2}	2145 (11) [2044 (13)]	-667 (8) [-696 (8)]	2680 (6) [2692 (6)]	
C _{c3}	2444 (12) [2355 (14)]	-822(8)[-871(9)]	3297 (6) [3304 (6)]	
C _{c4}	2241 (11) [2170 (12)]	-89(8)[-123(8)]	3647 (6) [3666 (6)]	
Ces	2395 (12) [2354 (12)]	-14 (8) [-36 (8)]	4313 (6) [4309 (6)]	
C _{c6}	2902 (8) [2911 (9)]	-739 (4) [-759 (5)]	4671 (3) [4673 (4)]	
C_{d_1}	2024 (12) [2022 (13)]	674 (8) [656 (8)]	4663 (6) [4673 (6)]	
C_{d_2}	2109 (11) [2098 (12)]	729 (8) [707 (8)]	5353 (6) [5357 (6)]	
C _{d3}	1591 (11) [1595 (12)]	1460 (8) [1448 (8)]	5328 (6) [5527 (6)]	
C_{d_4}	1225 (10) [1219 (11)]	1894 (8) [1895 (8)]	4962 (5) [4974 (5)]	
C_{ds}	609 (12) [593 (12)]	2664 (7) [2662 (8)]	4959 (6) [4947 (6)]	
C_{d_6}	361 (7) [357 (9)]	3044 (5) [3039 (6)]	5588 (3) [5587 (3)]	
C _{a7}	-889° [-868]	2949 [2914]	5867 [5876]	
$C_{a_{\beta}}$	-1115 [-1061]	3234 [3176]	6481 [6496]	
C _a ,	-90 [-28]	3616 [3562]	6817 [6827]	
Caio	1160 [1196]	3711 [3687]	6539 [6539]	
Cail	1385 [1389]	3426 [3425]	5925 [5919]	
C _{b7}	-853 [-715]	4618 [4651]	2236 [2214]	
Cbs	-1639 [-1451]	5225 [5283]	1955 [1930]	
C _b ,	-3003 [-2824]	5098 [5200]	1880 [1856]	
Cbio	-3581 [-3461]	4364 [4486]	2085 [2066]	
Cbii	-2795 [-2724]	3757 [3855]	2366 [2350]	
C _{c7}	-182 [-190]	-204 [-220]	1314 [1312]	
Ccs	-288 [-278]	-666 [-677]	759 [754]	
C _c ,	852 [867]	-860 [-850]	412 [412]	
Cc10	2096 [2100]	-591 [-566]	619 [627]	
C _{C11}	2202 [2188]	-128 [-110]	1174 [1185]	
C_{d_7}	2096 [2136]	-1137 [-1163]	5115 [5120]	
Cds	2601 [2678]		5467 [5478]	
Cda	3910 [3995]		5375 [5389]	
	4/10 [4//U] 4010 [4000]		4932 [4941]	
Udii Mathul C	4212 [4228] 2790 (11)	- 2422 (9)	4580 [4583]	
Chloring	3/87(11) 12776(2)]	2433 (8) [2420 (2)]	3282 (6)	
Chlorine	[3//0 (3)]	[2430 (2)]	[3272 (2)]	

^a Each symbol for an atom of the thallium tetraphenylporphyrins carries a literal subscript to identify its particular subunit (a, b, c, or d) and a numerical subscript that follows the numbering schemes used in Figure 1 to distinguish atoms of the same element within the same subunit. ^b The atomic coordinates are given for the nonstandard space group $P2_1/n$. ^c The phenyl substituents were refined as rigid bodies pivoting on the atom bonding to the porphyrin ring system, and the fractional cell coordinates for atoms C_7-C_{11} are dependent on atoms C_6 . ^d Methylthallium values are given first followed by the chlorothallium values in square brackets. Least-squares esd values are given in parentheses.

partial removal of solvent. The ¹H NMR spectra of these compounds showed coupling to ^{203,205}Tl but showed negligible solvent dependency and provided no evidence for coordination of pyridine over the temperature range -60 to 35 °C. This result was surprising in view of reported adduct formation in other metalloporphyrins¹⁶ and the suggested six-coordination for thallium in complexes assumed to be the aquohydroxythallium(III) derivatives (H₂O)OHTITPP and (H₂O)OH-TIOEP.⁸¹⁷ An x-ray structure determination of CH₃TITPP provided an explanation for this anomaly.¹⁸

Final coordinates and isotropic thermal parameters for all atoms except hydrogen atoms are listed in Tables II and III, respectively. The numbering scheme used to designate atoms of the $Tl(NC_{11}H_7)_4$ moiety is as follows. Each symbol for an atom of the porphyrin carries a literal subscript to identify the particular 2-methylenepyrrole subunit (a, b, c, or d) and a numerical subscript to distinguish between atoms of the same element within the subunit. Numerical subscripts for atoms are assigned in the same way for each subunit. The view of the molecule CH_3TITPP in Figure 1 is nearly parallel to the methyl-thallium bond and perpendicular to the mean plane of the macrocycle.

The thallium atom in CH₃TITPP is displaced from the plane defined by the porphyrin ring system by 1.11 Å. A shortening of the Tl–N bonds from an average of 2.29 Å or a major distortion from planarity of the N_4^{2-} donor set would be required before the Tl atom would lie close enough to the porphyrin to allow the approach of a second axial ligand.

A tilting of adjacent pyrrole rings by $9.4 \pm 0.60^{\circ}$ with respect to each other is apparently required to allow the Tl

Table III.	Thermal Parameters $(\times 10^3 \text{ A}^2)$ for the
Tetrapheny	/lporphinatothallium Compounds,
CH, TITPP	and CITITPP ^c

Atom type ^a		U	A t	Atom ype ^a		i	U		
$\begin{tabular}{ c c c c c } \hline Methyl C \\ N_{a1} \\ N_{b1} \\ N_{c1} \\ N_{c1} \\ C_{a1} \\ C_{a2} \\ C_{a3} \\ C_{a4} \\ C_{a5} \\ C_{a6} \\ C_{b1} \\ C_{b2} \\ C_{b3} \\ C_{b4} \\ C_{b5} \\ C_{b5} \\ C_{b5} \\ C_{c1} \\ C_{c2} \\ C_{c3} \\ C_{c4} \\ C_{c5} \\ C_{c6} \\ C_{d1} \\ \hline \end{tabular}$	$\begin{array}{c} 47 \ (3) \\ 34 \ (3) \\ 33 \ (2) \\ 35 \ (2) \\ 38 \ (2) \\ 38 \ (3) \\ 46 \ (3) \\ 44 \ (3) \\ 35 \ (3) \\ 33 \ (3) \\ 33 \ (3) \\ 33 \ (3) \\ 33 \ (3) \\ 35 \ (3) \\ 41 \ (3) \\ 35 \ (3) \\ 41 \ (3) \\ 35 \ (3) \\ 41 \ (3) \\ 35 \ (3) \\ 41 \ (3) \\ 35 \ (3) \\ 41 \ (3) \\ 35 \ (3) \\ 41 \ (3) \\ 42 \ (3) \\ 42 \ (3) \\ 42 \ (3) \\ 42 \ (3) \\ 42 \ (3) \\ 42 \ (3) \\ 42 \ (3) \\ 42 \ (3) \\ 42 \ (3) \\ 40 \ (3) \\ 42 \ (3) \\ 40 \ (3) \ ($	$\begin{bmatrix} 46 & (3) \\ [42 & (2) \\ [43 & (3) \\ [43 & (3) \\ [45 & (3) \\ [50 & (4) \\ [50 & (4) \\ [50 & (4) \\ [42 & (3) \\ [42 & (3) \\ [42 & (3) \\ [44 & (3) \\ [44 & (3) \\ [44 & (3) \\ [47 & (4) \\ [47 & (4) \\ [47 & (4) \\ [47 & (3) \\ [47$)])])])])])])])])])])])])])	C_{d_3} C_{d_4} C_{d_5} C_{d_6} C_{a_8} C_{a_10} C_{b_7} C_{b_7} C_{b_7} C_{b_9} C_{b_10} C_{c_10} C	422 366 388 399 555 633 59 56 466 67 755 69 451 59 57 555 455 600 655 711 61	$\begin{array}{c} (3) \\ (2) \\ (3) \\ (3) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (3) \\ (4) \\$	[43][44][45][46][70][84][70][88][71][57][588[69][74][66][61][71][64][72][64][73][65][664][73][65][664][73][65][664][73][65][664][73][65][664][73][65][664][73][65][664][73][65][664][73][65][664][73][65][664][73][65][664][73][65][664][73][65][664][664][73][65][664][664][73][65][664][664][664][664][664][664][664]	(3)] (3)] (4)] (5)] (5)] (5)] (5)] (5)] (5)] (4)] (5)] (4)] (5)] (4)] (4)] (5)] (4)] (4)] (5)] (4)] (5)] (5)] (5)] (5)] (5)] (5)] (5)] (5	
<u>d_</u>	$\frac{42(3)}{U_{11}b}$	$\frac{U_{ab}}{U_{ab}}$	$\frac{U_{ab}}{U_{ab}}$	U,,	<u>b</u>	U.,	b	U	<u>b</u>
TI in CH ₃ TITPP TI in CITITPP CI in CITITPP	41 (3) 46 (0) 51 (2)	39 (3) 41 (0) 72 (3)	32 (3) 33 (0) 66 (3)	-1.6 -2.7 8	(4) - (4) - (2)	-3.3 -3.7 2	(2) (2) (2)	1.3 4.0 -9 (5 (4) 5 (4) 2)

^a The atom numbering system follows that used in Table II. ^b Anisotropic parameters $(\times 10^3 \text{ A}^2)$. ^c Methylthallium values are given first followed by the chlorothallium values in square brackets. Least-squares esd values are given in parentheses.

Figure 1. Model in perspective of the CH_3TITPP molecule. The view is offset 5° from the perpendicular to the mean plane of the molecule.

atom to be coordinated at such an unusually large distance from the N₄ plane and to relieve "radial strain"²¹ in the core of the metalloporphyrin. "Radial strain" is minimal when the metal to coordinated nitrogen distance is only ~2.01 Å.²¹ This structure determination is the first reported for a monoorganothallium(III) compound and the first alkylmetalloporphyrin structure.

The 205 Tl $^{-13}$ C couplings in the methyl compounds CH₃TlTPP and CH₃TlOEP are similar but differ markedly

Table IV. ¹³C NMR Data^{*a*} for the Porphine Skeleton in the Thallium(III) Porphyrin Complexes, CH₃TITPP, CH₃TIOEP, CITITPP, and CITIOEP

δ , ppm (J (Tl- ¹³ C), Hz)					
Compd	Meso C	β-Pyrrole C	a-Pyrrole C		
CH₃TITPP CH₃TIOEP CITITPP ^b CITIOEP ^c	121.5 (56) 97.5 (52) 121.6 (115) 97.7 (147)	131.8 (28) 142.1 (24) 132.1 (110) 142.7 (104)	150.2 (34) 147.5 (30) 149.3 (7) 146.8 (18)		

^a In CDCl₃ with $(CH_3)_4$ Si as internal standard. ^b Values from ref 17. ^c Values from ref 22.

Figure 2. Model in perspective of the ClTITPP molecule. The view is 90° away from that of Figure 1 and is essentially 5° from the normal to the axis of the chloro-thallium bond.

from those reported for the aquohydroxy complexes (H₂-O)OHTITPP¹⁷ and (H₂O)OHTIOEP²² (Table IV). The nature of the axial ligands appears to have minimal effect on ¹³C chemical shifts. In an effort to determine the part played by structural differences, in particular coordination number and geometry, on the Tl-¹H and Tl-¹³C couplings to the porphyrin ring in these complexes, a structural investigation was undertaken of the compound presumed to be (H₂O)O-HTITPP and prepared by the method of Smith.⁸ The structural determination and analytical results (vide infra) showed the original formulation⁸ to be in error and that the product was CITITPP.

Final coordinates and isotropic thermal parameters for all atoms except hydrogen atoms for CITITPP are listed in Tables II and III, respectively. The numbering scheme follows that used for CH₃TlTPP. The view of the molecule ClTlTPP in Figure 2 is nearly perpendicular to the Cl-Tl bond. The Tl-N bond distance 2.21 (1) Å and TI-Cl is 2.420 (4) Å. The pyrrole rings are tilted with respect to each other by $8.7 \pm 0.7^{\circ}$. Coordinate bond lengths, polyhedral edge lengths, and the angles subtended at the thallium atom for CH₃TlTPP and CITITPP are given with their estimated standard deviations in Table V. In both molecules the coordination polyhedra are square pyramidal. Bond lengths and angles within the macrocycle are given with their estimated standard deviations in Table VI¹⁵ for each molecule. There is no significant alternation of bond lengths around the porphine skeleton.²³ Using the numbering scheme outlined in Table II the average values for bond lengths in the porphine skeleton for CH₃TlTPP [CITITPP] are: $N_1-C_1 = 1.373$ (6) [1.373 (12)]; $C_1-C_2 = 1.440$ (10) [1.436 (14)]; $C_2-C_3 = 1.351$ (7) [1.359 (6)]; $C_4-C_5 = 1.409$ (19) [1.399 (8)]; $C_5-C_6 = 1.490$ (13) [1.509 (3)] Å. The deviation from the mean bond lengths (in units of 0.001 Å, in parentheses) is in each case less than the mean of the estimated standard deviations for the individual bond lengths (Table VI).¹⁵ The agreement in the bond angles of a given chemical type in the core is equally close with average values as follows for CH₃TITPP [CITITPP]: $C_1N_1C_4 = 107.3$ (8) [108.1 (8)]; $N_1C_1C_2 = 108.9$ (7) [108.4 (10)]; $C_1C_2C_3 = 107.4$ (4) [107.5 (6)]; $N_1C_4C_5 = 125.9$ (12) [125.6 (6)]; $C_3C_4C_5 =$ Table V. Molecular Dimensions in the Coordination Group of CH₃TITPP and CITITPP^a

	(a) Dista	lices, A	
Tl-C _m Cl Tl-N _{a1} Tl-N _{b1}	2.147 (12) [2.420 (4)] 2.290 (9) [2.215 (10)] 2.287 (9) [2.211 (9)]	TI-N _{c1} TI-N _{d1}	2.298 (10) [2.208 (10)] 2.290 (10) [2.206 (10)]
	(b) Angles, c	leg	
$\begin{array}{l} N_{a1} - TI - C_m C \\ N_{b1} - TI - C_m C \\ N_{c1} - TI - C_m C \\ N_{d1} - TI - C_m C \\ \end{array}$	115.9 (5) [110.3 (3)] 116.3 (4) [108.6 (3)] 113.0 (4) [107.5 (3)] 116.1 (4) [111.4 (3)]	$\begin{array}{c} N_{a_1} - TI - N_{b_1} \\ N_{b_1} - TI - N_{c_1} \\ N_{d_1} - TI - N_{a_1} \\ N_{d_1} - TI - N_{a_1} \\ N_{a_1} - TI - N_{c_1} \\ N_{b_1} - TI - N_{d_1} \end{array}$	79.4 (3) [82.9 (4)] 79.7 (3) [84.0 (4)] 79.4 (3) [83.5 (4)] 79.3 (3) [84.1 (4)] 131.0 (3) [142.2 (4)] 127.7 (3) [139.9 (4)]
	(c) Polyhedral E	dge Lengths, A	
$\begin{array}{l} N_{a1} - C_{m} C \\ N_{b1} - C_{m} C \\ N_{c1} - C_{m} C \\ N_{d1} - C_{m} C \end{array}$	3.76 [3.80] 3.77 [3.76] 3.71 [3.73] 3.77 [3.82]	$N_{a1} - N_{b1} N_{b1} - N_{c1} N_{c1} - N_{c1} N_{c1} - N_{d1} N_{d1} - N_{a1}$	2.92 [2.93] 2.94 [2.96] 2.93 [2.96] 2.93 [2.94]

(a) Distances

 a The methyl values are given first followed by the chloro values in square brackets. Least-squares esd's are given in parentheses. The atom numbering scheme follows that used in Table II.

125.4 (10) [125.9 (5)]; $C_4C_5C_{x1} = 125.8$ (5) [127.1 (3)]; $C_4C_5C_6 = 115.8$ (16) [116.3 (12)]°.

The corresponding averaged bond lengths and angles in the porphine skeleton for CH₃TITPP and ClTITPP are in excellent agreement and show only one significant difference from the corresponding values found for Cl₂SnTPP,²⁰ although the esd's for bond parameters in the two thallium structures are large enough to make such a comparison difficult. Thus, for Cl₂SnTPP N₁-C₁, C₁-C₂, C₂-C₃, and C₄-C₅ values are 1.370, 1.446, 1.380, and 1.409 Å, respectively. The C₂-C₃ distances in CH₃TITPP (1.351 Å) and ClTITPP (1.359 Å) agree more closely with the value of 1.353 Å which is an average from seven structure determinations of iron-TPP complexes.^{24a}

The C_t ...N distances for CH₃TlTPP and ClTlTPP are 2.071 and 2.083 Å, respectively, and are close to the value of 2.098 Å found for Cl₂SnTPP. Figure 3 shows the structural radii, C_t ...C(α) and C_t ...C(meso).

The displacements of the carbon and nitrogen atoms in the porphine skeletons from the mean plane of the cores¹⁵ are displayed in Figure 3, which is drawn in the same orientation as Figure 1. Each labeled atom of Figure 1 has been replaced by its out-of-plane displacement in units of 0.01 Å. Both structures show marked "doming"24b in that the least-squares planes¹⁵ defined by the nitrogen atoms, the α -carbon atoms, the meso-carbon atoms, and the β -carbon atoms are all nearly parallel and are separated by successive values of 0.10(0.09), 0.03 (0.01), and 0.11 (0.12) Å for CH_3TITPP (CITITPP), respectively. The "doming" found here is in contrast to the conformation adopted in pyZnOEP^{24c} where one pyrrole ring is approximately parallel to the plane of the four nitrogen atoms and the other three pyrrole planes tilt away from the metal atom. Also in the two structures described here the mean planes defined respectively by the four nitrogen atoms and the entire $C_{20}N_4$ porphine skeleton in CH₃TlTPP [ClTITPP] are separated by 0.14 [0.12] Å, compared to ~0.01 Å in other porphyrins, NOCoTPP,^{24d} for example.

The dihedral angles between the mean plane of the porphine skeleton and the planes of the four phenyl groups are 80.0, 83.3, 70.4, and 64.3° for CH₃TITPP and 85.1, 82.6, 64.5, and 72.1° for CITITPP. The axial Tl-C methyl bond in CH₃TITPP is tipped only 1.2° from the normal to the mean skeletal plane and the corresponding Tl-Cl angle in CITITPP is 2.0°. Consequently both molecules deviate little from $C_{4\nu}$ symmetry.

The presence of chlorine in the compounds CITITPP and CITIOEP was confirmed by satisfactory chlorine analyses, and the anisotropic thermal parameters of the chlorine atom in CITITPP assumed physically impossible values when it was (a) : CH3TITPP

(b); CITITPP

Figure 3. Formal diagram of the porphinato core with the same relative orientation as Figure 1. Each atom symbol of (a) CH₃TITPP and (b) CITITPP has been replaced by its perpendicular displacement, in units of 0.01 Å, from the mean plane of the porphinato core. Also shown are the values for the structural radii, $C_1 \cdots N$, $C_1 \cdots C_{\alpha}$, and $C_1 \cdots C_{meso}$.

assigned as an oxygen atom. The published mass spectrum⁸ of CITIOEP is consistent with the formulation as a chloro compound. The calculated ratio²⁵ of the molecular ion, peaks m/e~772/770, was found to be 2.48 for (H₂O)OHTIOEP and 2.79 for CITIOEP. The observed value was 2.75.⁸ If the compound was the aquohydroxy compound this would represent an error of 11% in peak height measurements, whereas

the error calculated from the $[M^+ - axial ligand(s)]^+$ peaks m/e 737/735 (in the same spectrum) was 2.5% (calcd ratio of m/e 737/735 = 2.47, found 2.40). The source of chlorine in the synthesis is presumably the chloroform solvent used as eluent of the product from the reaction of $(CF_3COO)_3Tl$ with $TPPH_2$ on an alumina column. It appears that thallium has a remarkable ability to abstract a chlorine atom from the solvent molecule. A similar situation to the chloro, aquohydroxy case found here has been encountered for ClFeTPP which was at first believed to be $(H_2O)OHFeTPP.^{26}$ Analogously, compounds described as (H₂O)OHTl porphyrins,^{8,17,22} and prepared by similar procedures, may also contain chloro rather than hydroxy ligands.

¹³C NMR Spectra. The NMR data presented in Table IV can be examined on the basis of the solid state structures of CH₃TITPP and CITITPP. The ¹³C NMR spectra of the CITITPP, CH₃TITPP and CITIOEP, CH₃TIOEP pairs show some minor differences in chemical shifts. The $J(TI-^{13}C)$ coupling constants of the two chloro compounds, CITITPP and CITIOEP, are similar but substantially different from the values found for the analogous methyl compounds, CH₃TITPP and CH₃TlOEP, both in their absolute magnitudes and in the ratio of the two bond to three bond couplings. The differences found for $J(Tl^{-13}C)$ in the TPP complexes are not readily attributable to structural differences between the two molecules CH₃TITPP and CITITPP.

The structures of CH₃TlTPP and ClTlTPP do show substantially different displacements of the metal atom out of the porphyrin plane; Ct...Tl is 0.979 and 0.737 Å, respectively. Other structural features involving spin-spin coupled atoms, however, are found to be very similar; for example, the Tl-N-C_{α} angles for CITITPP and CH₃TITPP were 124.9 (8) and 123.9 (8)°, respectively. The Tl–N bond length is shortened by only 0.08 Å in CITITPP compared to CH₃TITPP. However, the possibility that $J(Tl^{-13}C)$ may be extremely sensitive to bond and angle deformations cannot be excluded (as are ${}^{2}J({}^{13}C-{}^{1}H)$ and ${}^{3}J({}^{13}C-{}^{1}H)$ couplings).²⁷

The values of $J(Tl^{-13}C)$ obtained for CH₃TlTPP and CH₃TlOEP are comparable to those obtained for dimethylthallium(III) 4,4'-diethoxycarbonyl-3,3',5,5'-tetramethyldipyrromethene.²⁸ The extent of π delocalization is reduced in the dipyrromethene case compared to that in the thallium(III) porphyrin derivatives and the similarity of the couplings casts doubt upon the reliability of using $J(Tl-^{13}C)$ as a probe of the π -electron pathway.^{8,22}

If it were assumed²² that these couplings are dominated by the Fermi contact term,²⁹ the increases in ${}^{3}J(\text{Tl}-{}^{13}\text{C}_{\beta})$ and ${}^{3}J(\text{Tl}-{}^{13}\text{C}_{\text{meso}})$ after substitution of methyl for chlorine may be ascribable to the greater electronegativity of the chlorine atom.³¹ However, the corresponding decrease observed for $^{2}J(Tl^{-13}C)$ is less readily explained and illustrates the need for basic studies on substituent effects before useful information about electronic structure can be deduced from coupling constants.

Acknowledgment. This work was supported by a grant from the SRC for diffractometer equipment and for use of the PCMU ¹³C NMR facility. The authors wish to thank Dr. A. P. Johnson for a gift of $OEPH_2$.

Registry No. CH₃TITPP, 63848-50-0; CITITPP, 63848-51-1; CH3TIOEP, 63848-52-2; CITIOEP, 58167-68-3; diacetatomethylthallium(III), 14774-85-7; (H₂O)OHT1TPP, 51475-96-8; (H₂O)-OHTIOEP, 33339-93-4.

Supplementary Material Available: Tables of molecular dimensions in the porphyrin skeleton (Table VI), equations of least-squares planes in the porphyrin skeleton (Table VII), and observed and calculated structure amplitudes (42 pages). Ordering information is given on any current masthead page.

References and Notes

- (1) R. K. Harris, Chem. Soc. Rev., 5, 1 (1976).
- (2)
- R. Harris, C. R. J. Soc. Rec., 5, 1 (1970).
 T. N. Mitchell, J. Organomet. Chem., 59, 189 (1973).
 P. J. Burke, R. W. Matthews, and D. G. Gillies, J. Organomet. Chem., (3)118, 129 (1976).
- (4) C. S. Hoad, R. W. Matthews, M. M. Thakur, and D. G. Gillies, J. Organomet. Chem., 124, C31 (1977).
- H. Kurosawa and R. Okawara, *horg. Nucl. Chem. Lett.*, **3**, 93 (1967). The nonequivalence of ortho H's in TPP complexes is discussed in S.
- S. Eaton and G. R. Eaton, J. Am. Chem. Soc., 97, 3360 (1975). The nonequivalence of methylene protons in OEP complexes is discussed in R. J. Abraham and K. M. Smith, Tetrahedron Lett., 36, 3335 (1971), and C. A. Busby and D. Dolphin, J. Magn. Reson., 23, 211 (1976).
- (8) R. J. Abraham, G. H. Barnett, and K. M. Smith, J. Chem. Soc., Perkin Trans. 1, 2142 (1973).
- (9)J. Hornstra and B. Stubbe, PW1100 Data Processing Program 1972. Philips Research Laboratories, Eindhoven, The Netherlands.
- (10) P. W. R. Corfield, R. J. Doedens, and J. A. Ibers, Inorg. Chem., 6, 197 (1967)
- (11) D. T. Cromer and J. B. Mann, Acta Crystallogr., Sect. A, 24, 321 (1968).
- (12) D. T. Cromer, Acta Crystallogr., 18, 17 (1965).
- (13) Programs for crystal structure determination were kindly supplied by G. M. Sheldrick, University of Cambridge, England.
- (14)C. K. Johnson, Oak Ridge National Laboratory, Tenn.
- (15) See supplementary material paragraph.
 (16) S. S. Eaton, G. R. Eaton, and R. H. Holm, J. Organomet. Chem., 39, 179 (1972).
- (17) R. J. Abraham, G. E. Hawkes, M. F. Hudson, and K. M. Smith, J. Chem. Soc., Perkin Trans. 2, 204 (1975).
- (18) The compound CH₃TITPP was chosen for the crystallographic work as compound CH3TiOEP was found to be of tetragonal habit (space group I4/m, Z = 2, a = b = 13.717, c = 10.306 Å). A structure determination was not attempted for CH₃TIOEP since previous determinations¹⁹ of fivecoordinate metalloporphyrins with this space group have shown that these complexes crystallize in a disordered variant of the structural type, based upon I4/m, for which crystals of Cl₂SnTPP²⁰ are the ordered prototype. These structure determinations have yielded metal atom displacements from the center of the mean porphinato plane which are probable lower limits only.
- (19) W. R. Scheidt and M. E. Frisse, J. Am. Chem. Soc., 97, 17 (1975), and references cited therein.
- (20) D. M. Collins, W. R. Scheidt, and J. L. Hoard, J. Am. Chem. Soc., 94, 6689 (1972).
- (21) D. M. Collins and J. L. Hoard, J. Am. Chem. Soc., 92, 3761 (1970). (22) R. J. Abraham, G. E. Hawkes, and K. M. Smith, J. Chem. Soc., Perkin
- Trans. 2, 627 (1974). (23) S. C. Tang, S. Koch, G. C. Papaefthymiou, S. Foner, R. B. Frankel,
- (23) S. C. Iang, S. Koch, G. C. Papaeirnymou, S. Fohei, K. B. Frankei, J. A. Ibers, and R. H. Holm, J. Am. Chem. Soc., 98, 2414 (1976).
 (24) (a) J. L. Hoard, "Porphyrins and Metalloporphyrins", K. M. Smith, Ed., Elsevier, New York, N.Y., 1975, p 317; (b) J. L. Hoard and W. R. Scheidt, Proc. Natl. Acad. Sci. U.S.A., 70, 3919 (1973); (c) D. L. Cullen and E. F. Meyer, Acta Crystallogr., Sect. B., 32, 2259 (1976); (d) W. R. Scheidt, J. Am. Chem. Soc., 96, 90 (1974).
 (25) J. H. Beynon, "Mass Spectrometry and its Applications to Organic Chemistry". Elsevier, Amsterdam, 1960.
- Chemistry", Elsevier, Amsterdam, 1960.
- (26) J. C. Hoard, G. H. Cohen, and M. D. Glick, J. Am. Chem. Soc., 89, 1992 (1967).
- (27) G. T. Karabatsos and C. E. Orzech, J. Am. Chem. Soc., 87, 560 (1965). (28) A. T. T. Hsieh, C. A. Rogers, and B. O. West, Aust. J. Chem., 29, 49
- (1976).
- (29) The assumption that ${}^{2}J(Tl-{}^{13}C)$ and ${}^{3}J(Tl-{}^{13}C)$ are dominated by Fermi contact interactions in these compounds may not be valid as in long-range $J({}^{1}\mathrm{H}-{}^{1}\mathrm{H})$ couplings in π systems the Fermi contact term is no longer the only large term to consider and the magnitude of the coupling does not depend solely upon the s character of the bonds.³¹
- (30) H. M. McConnell, J. Chem. Phys., 30, 126 (1959).
 (31) P. F. Cox, J. Am. Chem. Soc., 85, 380 (1963); S. Castellano and C. Son, *ibid*, 83, 4741 (1966); V. M. S. Gil and A. C. P. Alves, Mol. Phys., 16, 100 (2010). 527 (1969); H. J. Bernstein and N. Sheppard, J. Chem. Phys., 37, 3012 (1962).